65 Racines n^{ièmes} de l'unité

- **1.** On considère l'équation (E_1) : $x^3 = 1$.
- **a.** Trouver a, b et c tels que : $x^3 1 = (x 1)(ax^2 + bx + c)$.
- **b.** Résoudre dans \mathbb{C} l'équation $x^2 + x + 1 = 0$.
- **c.** En déduire les solutions de (E_1) et placer les images de ces nombres dans le plan complexe.
- **d.** Mettre les trois solutions de (E_1) sous forme exponentielle.
- **2.** On considère l'équation (E_2) : $x^4 = 1$.
- **a.** Factoriser $x^4 1$.
- **b.** Résoudre dans \mathbb{C} l'équation (E_2) et placer les images de ces nombres dans le plan complexe.
- **c.** Mettre les quatre solutions de (E₂) sous forme exponentielle.
- **3.** Quelles figures géométriques ont été obtenues en représentant les solutions de ces deux équations ?
- **4.** Quelle équation permettrait d'obtenir un octogone régulier ? Et un heptagone régulier ?

Un nombre complexe x vérifiant $x^3=1$ s'appelle une racine troisième de l'unité.

Dans le cas où x est réel, on connaît bien les solutions de ce genre d'équation $x^n=1$.

$$x^0=1$$
 $x^1=1$ donne $x=1$
 $x^2=1$ donne $x=-1$ ou $x=1$
 $x^3=1$ donne $x=1$
et ainsi de suite suivant la parité de l'exposant n .

- 1) L'équation dans \mathbb{C} , $\left(\mathsf{E}_{_{1}}\right)$: $x^{3} = 1$ équivaut à $x^{3} 1 = 0$.
- a) x=1 est racine du polynôme x^3-1 , donc x^3-1 est factorisable par x-1.

$$x^3-1=(x-1)(ax^2+bx+c) \qquad \qquad \text{équivaut à } x^3-1=ax^3+(b-a)x^2+(c-b)x-c \\ \qquad \qquad \text{qui équivaut à } 1=a \text{ et } 0=b-a \text{ et } 0=c-b \text{ et } -1=-c \text{ .}$$

On obtient donc $x^3 - 1 = (x - 1)(x^2 + x + 1)$.

- b) Le polynôme x^2+x+1 a pour discriminant $\Delta=-3$ négatif, donc il admet deux racines complexes conjuguées $x_1=-\frac{1}{2}-\frac{\sqrt{3}}{2}i$ et $x_2=-\frac{1}{2}+\frac{\sqrt{3}}{2}i$.
- c) Les solution de (E_1) sont donc : 1, x_1 et x_2 .
- d) Formes exponentielles:

$$x_1 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$$
 donc $|x_1|^2 = \frac{1}{4} + \frac{3}{4} = 1$ et $|x_1| = 1$

Alors si j'appelle ϕ un argument de x_1 , j'ai $\cos\phi = -\frac{1}{2}$ et $\sin\phi = -\frac{\sqrt{3}}{2}$ donc $\phi = -\frac{2\pi}{3}[2\pi]$.

Ainsi
$$x_1 = re^{i\theta} = e^{-i\frac{2\pi}{3}}$$
 et donc $x_2 = \overline{x_1} = e^{i\frac{2\pi}{3}}$.

2) (E_2) : $x^4=1$ dans \mathbb{C} .

Le polynôme complexe x^4-1 admet 1 pour racine, donc il est possible de la factoriser par x-1 En posant la division de x^4-1 par x-1 on obtient : $x^4-1=(x-1)(x^3+x^2+x+1)$.

Il reste à résoudre l'équation $x^3+x^2+x+1=0$, équation du troisième degré, pour lesquels nous n'avons pas d'autre méthode que de trouver une racine a, puis de factoriser le polynome par x-a

-1 est une racine évidente, donc on peut factoriser x^3+x^2+x+1 par x+1 en posant la division suivant les puissances croissantes, et on obtient : $x^3+x^2+x+1=(x+1)(1+x^2)$

Donc les solutions de $\left(\mathsf{E_2}\right)$ sont 1 , -1 , i et -i

$$1=e^{0i}$$
 $-1=e^{i\pi}$ $i=e^{i\frac{\pi}{2}}$ $-i=e^{-i\frac{\pi}{2}}$

- 3) On obtient des polygônes réguliers à n côtés.
- 4) Pour obtenir un octogone il faut résoudre l'équation $z^8=1$.

Cas général :

Les n solutions de l'équation $x^n=1$ sont les complexes de la forme $z_k=e^{i\frac{2k\pi}{n}}$, pour k allant de 0 à n-1, appelés racines n-ièmes de l'unité.

On a alors bien $z_k^n = 1$.

89 Histoire d'angles

On considère un cercle ${\mathscr C}$ de centre O et de rayon r.

On rapporte le plan au plan complexe et on le munit d'un repère orthonormé (O; \overrightarrow{u} , \overrightarrow{v}).

Le point du cercle € d'affixe r est appelé A.

Soit B un point quelconque du cercle € tel que :

$$(\overrightarrow{OA}, \overrightarrow{OB}) = \varphi + 2k\pi$$

avec $k \in \mathbb{Z}$.

- a. Donner une écriture exponentielle de l'affixe du point B.
- **b.** Soit M un point quelconque du cercle %. On note son affixe $re^{i\alpha}$.

Écrire (\overrightarrow{MA} , \overrightarrow{MB}) en fonction des affixes z_M , z_A et z_B des points M, A et B.

On note θ une mesure de l'angle (MA, MB).

Montrer que :

$$e^{i\theta} = \frac{e^{i\phi} - e^{i\alpha}}{1 - e^{i\alpha}}$$

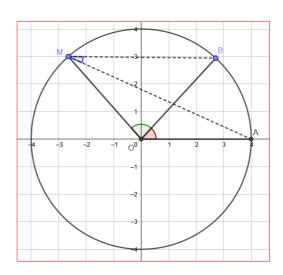
- d. Exprimer e-i0 en fonction de ei0.
- e. Calculer $\frac{e^{i\theta}}{e^{-i\theta}}$ de deux façons pour en déduire que :

$$e^{2i\theta} = \frac{e^{i\phi} - e^{i\alpha}}{1 - e^{i\alpha}} \times \frac{1 - \frac{1}{e^{i\alpha}}}{\frac{1}{e^{i\phi}} - \frac{1}{e^{i\alpha}}}$$

$$2\theta = \varphi + 2k\pi$$

avec $k \in \mathbb{Z}$

g. Quel théorème est démontré dans cet exercice ?



- a) Le point B a pour affixe $z_B = re^{i(\phi+2k\pi)} = re^{i\phi}$, et le point A pour affixe $z_A = r$.
- b) Soit M le point du cercle C d'affixe $z_{M} = re^{i\alpha}$.

L'angle $(\overline{MA}, \overline{MB})$ est égale à l'argument du complexe $\frac{z_{\rm B} - z_{\rm M}}{z_{\rm A} - z_{\rm M}}$

donc
$$(\overline{MA}, \overline{MB}) = arg \left(\frac{z_B - z_M}{z_A - z_M} \right)$$
.

c) Soit θ une mesure de l'angle $(\overline{MA}, \overline{MB})$.

On a alors $\frac{z_B - z_M}{z_A - z_M} = k \times e^{i\theta}$ où k est le module du complexe $\frac{z_B - z_M}{z_A - z_M}$,

ce qui donne
$$e^{i\theta} = \lambda \times \frac{z_B - z_M}{z_A - z_M}$$
 soit $e^{i\theta} = \lambda \times \frac{r e^{i\phi} - r e^{i\alpha}}{r - r e^{i\alpha}}$ et donc $e^{i\theta} = \lambda \times \frac{e^{i\phi} - e^{i\alpha}}{1 - e^{i\alpha}}$.

d) $e^{-i\theta} = \frac{1}{e^{i\theta}}$ ou encore $\overline{z} = \frac{1}{z}$ pour tout complexe z de module 1.

En effet, si $z\overline{z}=1$ alors $\overline{z}=\frac{1}{z}$, ce qui est le cas des complexes de la forme $e^{i\theta}$.

e) première méthode :
$$\frac{e^{i\theta}}{e^{-i\theta}} = e^{2i\theta}$$

$$\text{deuxième m\'ethode}: \qquad \text{comme } e^{i\theta} = \lambda \times \frac{e^{i\phi} - e^{i\alpha}}{1 - e^{i\alpha}} \text{ alors } e^{-i\theta} = \lambda \times \frac{e^{-i\phi} - e^{-i\alpha}}{1 - e^{-i\alpha}}$$

donc
$$e^{-i\theta} = \lambda \times \frac{\frac{1}{e^{i\phi}} - \frac{1}{e^{i\alpha}}}{1 - \frac{1}{e^{i\alpha}}}$$
 et $\frac{e^{i\theta}}{e^{-i\theta}} = \frac{e^{i\phi} - e^{i\alpha}}{1 - e^{i\alpha}} \times \frac{1 - \frac{1}{e^{i\alpha}}}{\frac{1}{e^{i\phi}} - \frac{1}{e^{i\alpha}}}$

Finalement on obtient bien
$$e^{2i\theta} = \frac{e^{i\phi} - e^{i\alpha}}{1 - e^{i\alpha}} \times \frac{1 - \frac{1}{e^{i\alpha}}}{\frac{1}{i\phi} - \frac{1}{i\alpha}}$$
.

f) En multipliant la deuxième fraction par $e^{i\alpha}$ au numératuer et au dénominateur, on obtient :

$$e^{i2\theta} = \frac{e^{i\phi} - e^{i\alpha}}{1 - e^{i\alpha}} \times \frac{e^{i\alpha} - 1}{\frac{e^{i\alpha}}{e^{i\phi}} - 1} = \frac{e^{i\phi} - e^{i\alpha}}{1 - \frac{e^{i\alpha}}{e^{i\phi}}} = \dots = e^{i\phi} \text{ en finissant correctement le calcul}$$

On obtient donc $2\theta = \phi + 2k\pi$, ce qui peut se traduire par $(\overline{OA}, \overline{OB}) = 2 \times (\overline{MA}, \overline{MB})[2\pi]$.

Cette propriété géométrique des arcs de cercles s'énonce ainsi :

L'angle au centre qui intercepte un arc de cercle \widehat{AB} est le double de tout angle inscrit qui intercepte le même arc de cercle.