Fonctions n°2

Exercice 1

Soit f la fonction définie sur [-3;5] par $f(x) = x^2 - x - 6$.

Soit C_f la courbe représentative de f.

1) Déterminer graphiquement :

f(0) =

1'image de 3 par *f* :.....

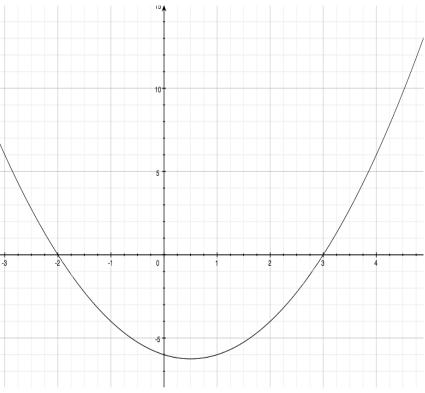
les antécédents de -4 par f:.....

les antécédents de 10 par f:.....

les antécédents de -6 par f:....

l'ordonnée du point de C_f d'abscisse 5 :...

les solutions de l'équation $f(x) = 3 \dots$



- 2) Déterminer algébriquement l'image de $\frac{1}{2}$ par f.
- 3) Montrer que pour tout x de $\left[-3,5\right]$, $f(x) = \left(x-3\right)\left(x+2\right)$.
- 4) Retrouver algébriquement les antécédents de 0 par f.

Exercice 2

Dans tout l'exercice, f est une fonction et C_f sa courbe représentative dans un repère $(O; \vec{i}, \vec{j})$

1) Si f(2) = 3 alors:

V F

• 2 est l'image de 3 par f

• 2 a pour image 3 par f

• 2 est un antécédent de 3 par f

• 3 n'admet pas d'antécédent par f

- le point d'abscisse 3 de C_f a pour ordonnée 2

- 2 est l'abscisse d'un point de C_f qui a pour ordonnée $3\square$
- 2) Si $f(x) = x^2 + 2$ alors:
- L'équation f(x) = 0 admet deux solutions

• 6 admet deux antécédents par f

• l'image de -1 par f est 3

• C_f ne coupe pas l'axe des abscisses

 • le point A(2;4) est un point de C_f

Exercice 3

Soit \mathcal{C} la courbe représentant une fonction f définie sur $\left[-1;6\right]$ vérifiant les contraintes suivantes :

• f(-1) = 3

• l'image de 3 par f est 1

• 2 est un antécédent de -1 par f

• 5 est une solution de l'équation f(x) = 6

• l'équation f(x) = 0 admet exactement deux solutions.

1) Traduire chacune des cinq informations données $\sup f$ par une information $\sup \mathscr{C}$.

2) Donner une allure possible pour la courbe &.

